An Effective Feature Selection Method Using Dynamic Information Criterion
نویسندگان
چکیده
With rapid development of information technology, dimensionality of data in many applications is getting higher and higher. However, many features in the high-dimensional data are redundant. Their presence may pose a great number of challenges to traditional learning algorithms. Thus, it is necessary to develop an effective technique to remove irrelevant features from data. Currently, many endeavors have been attempted in this field. In this paper, we propose a new feature selection method by using conditional mutual information estimated dynamically. Its advantage is that it can exactly represent the correlation between features along with the selection procedure. Our performance evaluations on eight benchmark datasets show that our proposed method achieves comparable performance to other well-established feature selection algorithms in most cases.
منابع مشابه
Improving Chernoff criterion for classification by using the filled function
Linear discriminant analysis is a well-known matrix-based dimensionality reduction method. It is a supervised feature extraction method used in two-class classification problems. However, it is incapable of dealing with data in which classes have unequal covariance matrices. Taking this issue, the Chernoff distance is an appropriate criterion to measure distances between distributions. In the p...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملApplying Feature-Selection Algorithm to Predict Landslide in the Southwest of Iran
Extended abstract 1- INTRODUCTION Nowadays people have an increased sensitivity towards landslides especially in mountainous areas using change in the land use and the expansion of communication networks (Gvrsysky et al., 2006). In the twentieth century, Asia has allocated the highest incident of landslides (220 landslides). Latin America has had the highest number of casualties (more than 2,...
متن کاملNeuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements
In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کامل